Anticonvulsant Poisoning

Blaine (Jess) Benson, Pharm.D., DABAT
Director, NMPDIC
Jebenson@salud.unm.edu

Which compound was identified from muscle extracts in 1905?

- A. topiramate
- B. myostatin
- C. phenytoin
- D. lamotrigine
- E. I-carnitine

What are the manifestations of DRESS Syndrome?

- A. coma, hyperammonemia, steatosis
- B. fever, eosinophilia, rash
- C. psychosis, visual loss, weight gain
- D. fatigue, leukopenia, ataxia
- E. inappropriate apparel, dementia, diplopia

Phenytoin
Carbamazepine
Phenobarbital
Primidone
Lamotrigine

Presentation Objectives

After studying required readings and lecture notes, students will be able to:

- Describe the pathophysiology and clinical manifestations associated with anticonvulsant poisoning.
- Assess patient risk for anticonvulsant poisoning based on dose, laboratory findings, and patient risk factors.
- Construct a treatment regimen for anticonvulsant poisoning and describe the rationale for each treatment element.

Example Case

A 2 year-old boy ingested seven 50 mg chewable phenytoin tablets within the last 5 minutes. The child is asymptomatic and has no prior medical conditions. He is not taking any medications currently. No treatments have been instituted.

Seizures - Pathophysiology

- Sustained firing of sodium channels
- Excessive Ca conductance
- Increased interaction between glutamate and receptors
- Loss of GABA activity

Anticonvulsant MOA

- Inhibition of Na channel function
 - Phenytoin, CBZ, VPA, topiramate, felbamate
 - Lamotrigine, zonisamide, oxcarbazepine
- Increased GABA activity
 - Gabapentin =>) release of GABA from presynaptic vesicles
 - Vigabatrin & VPA => irreversible binding of GABA transaminase =>) GABA
 - Tiagabine => inhibits GABA reuptake

Anticonvulsant MOA

- Inhibition of n-methyl-D-aspartate (NMDA) receptor
 - Felbamate & VPA (glutamate receptor antagonists)
 - Lamotrigine & phenytoin (inhibit glutamate release)
- Modulation of voltage dependent Ca channels
 - Low V:Ethosuximide, VPA, and zonisamide
 - High V: Levetiracetam

Mechanisms of Anticonvulsants

Source: Nelson LS, Lewin NA, Howland MA, Hoffman RS, Goldfrank LR, Flomenbaum NE: Goldfrank's Toxicologic Emergencies, 9th Edition: http://www.accessemergencymedicine.com

General Rule of Anticonvulsant Triage

- Patients who achieve a serum concentration within the therapeutic range stay home for observation
- Patient who are above the therapeutic range are referred to ED
- Degree of illness is dependent on serum concentrations established through case reports and case series

Phenytoin (Dilantin)

- Available forms
 - 50 mg, 100 mg, 125 mg/5 mL
- Pharmacokinetics
 - Weak acid with pK of 8.3
 - Vd 0.6 0.7, protein binding 90%-95%
 - Metabolized to parahydroxyphenyl derivative; 5% eliminated unchanged
 - Michaelis-Menton kinetics
 - < 10 mg/L => 1st order (t1/2 of 6-24 hours)
 - > 10 mg/L => 0 order (t1/2 of 20-60 hours)
 - Therapeutic levels
 - 10 20 mg/L

Fosphenytoin (Cerebyx)

- Available forms
 - Injection 150 mg/2 mL, 750 mg/10 mL
- Pharmacokinetics
 - pH 8-9
 - Converted to phenytoin by circulating phosphates

Phenytoin

Clinical Manifestations

mg/L	S/sx
15	Nystagmus
30	Ataxia
50	Lethargy, slurred speech, pyramidal and extrapyramidal symptoms

 Cardiovascular toxicity: usually attributed to IV preparations of phenytoin or large doses of fosphenytoin (5-10 X the therapeutic dose) => bradycardia, hypotension, asystole

Phenytoin

- Adverse Effects
 - gingival hyperplasia (dose-related), facial coarsening, peripheral neuropathy, bone diseases, and vitamin deficiencies
 - Idiosyncratic
 - · leukopenia, thrombocytopenia, aplastic anemia

Phenytoin Management

- Supportive Care
 - CPR
- Prevent Absorption
 - AC
- Enhance Elimination
 - MDAC may be helpful
 - Hemodialysis/hemoperfusion are of no benefit

Carbamazepine (Tegretol) Uses

- Structurally related to cyclic antidepressants
- Also used for chronic pain syndromes (trigeminal neuralgias)
- Migraine prophylaxis
- Bipolar affective d/o

Carbamazepine (Tegretol)

Available Forms

Tablets: 100 mg, 200 mg

Capsules: 200 mg, 300 mg

Liquid: 100/5

Pharmacokinetics

- Absorption: Slow, may take up to 24 hour to reach peak
- Distribution: 0.6 2 L/kg; 75%-90% protein bound
- Metabolism: metabolized through CYP3A4, forms an active metabolite (10,11 epoxide) => carbamazeine diol (inactive); autoinduction occurs during 1st couple of weeks of therapy
- Therapeutic levels
 - 4 12 mg/L

CBZ Poisoning Manifestations

- Neurological
 - Nystagmus, ataxia, dysarthria => lethargy and coma
 - Seizures (55% in patients with levels >40 mg/L)
- Cardiovascular
 - Sinus tachycardia, hypotension, conduction abnormalities (QRS widening; QTc prolongation)
- Chronic
 - Increased vasopressin secretion => hyponatremia (SIADH)
- Correlation to Levels
 - ≥40 mg/L => coma, sz, respiratory depression and cardiotoxicity

CBZ Adverse Effects

- Dose-related
 - irritability, impaired concentration, memory impairment
- Idiosyncratic
 - rash, hepatitis, drug-induced SLE, hemopoetic disorders (leukopenia)

CBZ Management

- Supportive
 - Cardiac arrhythmia: Consider HCO₃
 - Sz: Benzodiazepine
- Enhance Elimination
 - MDAC
 - Possibly hemoperfusion or high efficiency (high flux) hemodialysis

Valproic Acid (Depakene) Uses

- Absence (simple and complex) seizures
- Complex partial seizures
- Myoclonic seizures
- Mood stabilizer
- Migraine headache prophylaxis
- Urinary incontinence

Valproic Acid (Depakene) Divalproex (Depakote)

Available Forms

- Depakene: 250 mg
- Depakote: 125 mg, 250 mg, 500 mg
- Pharmacokinetics
 - Absorption: 100% absorbed from GI tract
 - Vd: .14-.23 L/kg; Protein binding: 90% at therapeutic levels, but decreases in overdose
 - Metabolism: Conjugated by glucuronide and then oxidized by either a carnitine-dependent mitrochondrial β- oxidation or by microsomal ω- oxidation (forms a hepatoxic metabolite and causes interruption of urea cycle => ammonia accumulation
 - Therapeutic levels: 50-100 mg/L

Metabolism of VPA

VPA Toxicity

- Drowsiness=>coma=>cerebral edema
 - >30 mg/kg => coma and respiratory depression
- Metabolic complications
 - Metabolic acidosis with anion gap
 - Hypernatremia
 - Hypocarnitemia
 - Hyperammonemia (>60 umol/L)*
 - *seen with chronic or acute on chronic exposures
- Bone marrow suppression
 - 3-5 days after massive overdose
- Rare complications
 - Pancreatitis, hepatic failure, renal failure

VPA Adverse Effects

- Hepatotoxicity (4 types)
 - Transient, reversible elevations of transaminases
 - Reversible hyperammonemia
 - Toxic hepatitis
 - Reye-like syndrome

VPA Laboratory Assessment

- Serial VPA levels
- For ill patients consider:
 - Carnitine levels
 - Carnitine ≤20 uM, or acylcarnitine/free carnitine ratio of ≥0.4 indicative of hypocarnitinemia
 - Urinary 2-enVPA
 - Serum ammonia

VPA Management

- Supportive
 - ABC's
- Prevent Absorption
 - Lavage, AC
- Enhance Elimination
 - MDAC, hemodialysis
- Antidote
 - Naloxone?
 - Carnitine?

Carnitine Therapy

- Indications
 - >400 mg/kg VPA
 - Hyperammonemia or hepatotoxicity
 - Supplement for children <2 and "at risk" for hepatotoxicity
- Dose
 - Loading: 100 mg/kg IV over 30 minutes (max of 6 gm)
 - Maintenance: 15 mg/kg IV over 10-30 minutes every 4 hours
 - Give 3-4 days until clinical improvement

Gabapentin (Neurontin) Uses

- Partial seizures without secondary generalization
- Post traumatic stress disorder
- Behavior/mood disorders
- Bruxism
- Neurologic disturbances

Gabapentin (Neurontin)

- Available forms
 - 100 mg, 300 mg, 400 mg tablets and capsules
- Pharmacokinetics
 - Absorption: 60% bioavailability
 - Distribution: 1-2 L/kg; not protein bound
 - Metabolism: Not metabolized
 - Therapeutic blood level: 2-15 mg/L

Gabapentin OD Manifestations

- Sedation
- Ataxia
- Slurred speech
- Tremulousness*
- Cognitive deficits*
- Withdrawl syndrome
- * seen with chronic overdose and in patients with renal failure

Gabapentin Adverse Effects

- Dizziness
- Ataxia
- Fatigue
- Nystagmus
- Headache
- Rhinitis
- Movement disorders

Gabapentin Laboratory Assessment

 Gabapentin blood level (therapeutic is 2-15 ug/mL)

Gabapentin Management

- Supportive Care
 - ABC's
- Prevent Absorption
 - Lavage, AC
- Enhance Elimination
 - No data on value of hemodialysis or hemoperfusion

Felbamate (Felbatrol) Uses

- Structurally related to meprobamate
- Can cause hepatic failure and aplastic anemia so it is a therapy of last resort

Felbamate (Felbatrol)

- Available Forms
 - Tablets: 400 mg, 600 mg
 - Suspension: 600 mg/5 mL
- Pharmacokinetics
 - Absorption: rapid, peak levels in 1-4 hours
 - Distribution: 0.7-1.0 L/kg; 22%-25% protein bound
 - Metabolism: No active metabolites, 90% excreted unchanged
 - Half-life: 13-23 hours
 - Therapeutic blood levels: 18-83 ug/mL

Felbamate OD Manifestations

- Mild lethargy
- Gastrointestinal upset
- Coma
- Respiratory failure
- Crystalluria, hematuria
- Reversible renal failure

Felbamate Adverse Effects

- Weight gain or weight loss
- Insomnia
- Somulence
- Nausea and vomiting
- Hepatic failure
- Aplastic anemia

Laboratory Assessment

- Felbamate blood concentration
 - Levels > 135 ug/mL are potentially associated with toxicity

Felbamate Poisoning Managment

Supportive

Lamotrigine (Lamictal) Uses

- Approved as an adjunct medication for treatment of partial seizures or secondary generalized seizures
- Bipolar mood disorders

Lamotrigine (Lamictal)

- Available Forms
 - Tablets: 25 mg, 100 mg, 150 mg, 200 mg
- Pharmacokinetics
 - Absorption: 98% bioavailability
 - Distribution: 1.2-1.5 L/kg; 55%-56% protein bound
 - Metabolism: glucuronidated to inactive metabolite; phenytoin and CBZ induce metabolism lamotrigine ; VPA competes with metabolism of lamotrigine
 - Half-life: 25 hours
 - Therapeutic blood levels: 1-4 mcg/mL

Lamotrigine Overdose Manifestations

- 19 64 mg/kg => lethargy, ataxia, nystagmus, slurred speech, seizures, ECG abnormalities
- 19.2 mg/kg => mild lethargy, vertical and horizontal nystagmus, QRS prolongation

Lamotrigine Adverse Effects

- Dizziness
- Headaches
- Diplopia
- Ataxia
- Stevens-Johnson Syndrome

Laboratory Assessment

>5 mg/L => potentially toxic

Lamotrigine Overdose Management

- Supportive Care
 - EKG monitoring; potentially use HCO₃ for QRS prolongation
- Prevent Absorption
 - Lavage, AC
- Enhancing Elimination
 - No data; Manufacturer states that it is dialyzable

Vigabatrin (Sabril) Uses

- Structurally similar to GABA
- Inhibits GABA-transaminase
- Adjuctive agent for multi-drug refractory complex partial seizures in adults
- Resistant partial seizures and infantile spasms in children and adolescents

Vigabatrin (Sabril)

- Available Forms
 - 500 mg tablet
- Pharmacokinetics
 - Absorption: peak in 0.5-2 hours
 - Distribution: Vd=0.8 L/kg; not protein bound
 - Metabolism: excreted unchanged
 - Half-life: 7 hours
 - Therapeutic blood concentrations: 90-200 nmol/mL

Vigabatrin Overdose Manifestations

- Acute Poisonings
 - 8-10 g => vertigo, tremor, long-term psychosis
 - 30 g + chlorazepate => coma
 - 60 g => severe agitation
- Chronic toxicity => psychosis, vertigo, tremor

Vigabatrin Adverse Effects

- Depression
- Psychosis
- Visual defects
 - Concentric and predominantly nasal field constriction
 - Onset is 1 month to several years
 - Incidence estimated to be 14.5/10,000 patients treated
 - Can be permanent

Laboratory Evaluation

> 80 mg/L => potentially toxic

Vigabatrin Management

Supportive

Topiramate (Topamax) Uses

- Adjunctive therapy for patients with partial seizures, generalized tonic-clonic, or Lennox Gastaut syndrome
- Blocks sodium channels, enhances GABA and diminishes action of glutamate
- Advantages of topiramate are long half-life, good tolerability, no hepatoxicity or hematotoxicity.
- A disadvantage is induction of cognitive disturbances (decreased cognition, dulled thinking, blunted mental reactions). Incidence is 30%-40%.

Topiramate (Topamax)

- Available Forms
 - Tablets: 25 mg, 100 mg, 200 mg
 - Capsules: 15 mg, 25 mg, 50 mg
- Pharmacokinetics
 - Absorption: 80% bioavailability; peak levels in 1.5-4 hours
 - Distribution: Vd = 0.6-0.8 L; protein binding 9%-17%
 - Metabolism: limited metabolism (hydroxylation, hydrolysis then conjugation to glucuronides)
 - Half-life: 18-24 hours
 - Therapeutic Blood Levels: Not established

Toprimate Overdose Manifestions

- Lethargy, ataxia, nystagmus, myoclonus, coma, seizures, and status epilepticus
- Non anion gap metabolic acidosis, hyperchloremia
- In the two reported cases patients developed agitation, combativeness, confusion, incoherence, speech impairment, bradykinesia and bradyphasia. Both recovered in 24 hours. Doses were 400-800 mg.

Toprimate Adverse Effects

- Lethargy
- Confusion
- Somulence
- Ataxia
- · Diplopia,
- Paresthesias
- Nephrolithiasis

Topiramate OD Management

- Supportive Care
 - Monitor ECG for QRS prolongation
- Prevent Absorption
 - Lavage, AC
- Enhancing Elimination
 - Should be dialyzable; clearance across dialysis membrane is 120 mL/minute

Ethosuximide (Zarontin)

Used in treatment of absence (petit mal) seizures

Ethosuximide (Zarontin)

- Available Forms
 - Capsules: 250 mg
 - Syrup: 250 mg/5 mL
- Pharmacokinetics
 - Absorption: peak levels in 2-4 hours
 - Distribution: Vd = 0.6-0.7 L/kg
 - Metabolism: 80% metabolized in liver to 3 inactive metabolites
 - Half-life: 30 hours
 - Therapeutic Blood Level: 40-100 ug/mL

Ethosuximide OD Manifestations

- Confusion
- Sleepiness
- Unsteadiness
- Flaccid muscles
- Coma
- Slow, shallow respirations

- Hypotension
- Cyanosis
- Hypo or hyperthermia
- Absent reflexes
- Nausea
- Vomiting

Ethosuximide Adverse Effects

- Behavioral disturbances
 - Confusion, instability, mental slowness, depression, hypochondriacal behavior, night terrors, aggressiveness, inability to concentrate
- Stevens-Johnson syndrome
- Aplastic anemia
- Drug induced SLE
- Renal damage

Tiagabine (Gabitiril)

- GABA uptake inhibitor
- Adjunctive therapy for partial seizures

Tiagabine (Gabitiril)

- Available Forms
 - Tablets: 4 mg, 12 mg, 16 mg, 20 mg
- Pharmacokinetics
 - Absorption: peak levels in 45 minutes with single therapeutic doses
 - Distribution: 96% protein bound
 - Metabolism: CYP3A4, one inactive metabolite
 - Half-life: 7-9 hours

Tiagabine OD

- Usual dose: 4 32 mg/day
- Usual blood levels: 1-234 ng/mL
- There have been several overdoses reported. The clinical features observed include myoclonus, rigidity, agitation, and status epilepticus.
- Symptoms seen at 2X top end of therapeutic blood conc (420 ng/mL)

Forbes RA, Kalra H, Hackett LP, Daly FF. Deliberate self-poisoning withtiagabine: an unusual toxidrome. Emerg Med Australas. 2007 Dec;19(6):556-8.

Wiśniewski M, Sein Ánand J, Chodorowski Z, Kosińska-Tomczyk H. [Tiagabineoverdose--report of two cases]. Przegl Lek. 2007;64(4-5):308-9.

Fulton JÅ, Hoffman RS, Nelson LS. Tiagabine overdose: a case of statusepilepticus in a non-epileptic patient. Clin Toxicol (Phila). 2005;43(7):869-71.

Cantrell FL, Ritter M, Himes E. Intentional overdose with tiagabine: anunusual clinical presentation. J Emerg Med. 2004 Oct;27(3):271-2.

Tiagabine Adverse Effects

- Sedation
- Chest pain, tachycardia, hypertension
- Muscle weakness

Tiagabine OD Management

- Supportive
 - ABC's
- Preventing Absorption
 - Lavage, AC
- Enhancing Elimination
 - Dialysis and hemoperfusion are likely not helpful since the drug is highly protein bound

Oxcarbazepine (Trileptal)

- Antiepileptic derived from carbamazepine
- Used in monotherapy or adjuctive therapy in treatment of partial seizures in adults and children.
- Effective in treating trigeminal neuralgia.
- Potential alternative to CBZ in intolerant patients

Oxcarbazepine & MHD Pharmacokinetics

- Oxcarbazepine
 - Vd=0.7 L/kg
 - Protein bind 40%-60%
 - Half-life 1-2.5 hours
- MHD (10-hydroxycarbazepine)
 - Vd=0.7 L/kg
 - Protein binding 40%
 - Half-life 10 hours

Oxcarbazepine (Trileptal)

- Induces CYP2C19 and CYP3A4/5
- Lower incidence of skin rashes than CBZ
- Somulence, tinnitus, bradycardia and hypotension
- Will likely produce QRS prolongation
- Produces SIADH

Oxcarbazepine OD Treatment

- Supportive care
 - ABC's
- Preventing Absorption
 - Lavage, AC
- Enhancing elimination
 - Not useful (based on single case report)

Furlanut M, Franceschi L, Poz D, Silvestri L, Pecorari M. Acute oxcarbazepine, benazepril, and hydrochlorothiazide overdose with alcohol. Ther Drug Monit. 2006;28(2):267-8.

Levetiracetam (Keppra)

- Mechanism is unknown
- Pharmacokinetics
 - Not metabolized by CYP 450
 - Vd=0.7L/kg; No protein binding
 - Half-life: 6-8 hrs
- SE's: somulence, asthenia, psychiatric symptoms; polycythemia and leukocytosis

Levetiracetam OD

 30 gram OD in a 38 yo produced respiratory depression requiring intubation. (Barrueto F Jr. Williams K. Howland MA. Hoffman RS. Nelson LS. A case of levetiracetam (Keppra) poisoning with clinical and toxicokinetic data. [Case Reports. Journal Article] Journal of Toxicology - Clinical Toxicology. 40(7):881-4, 2002.)

Levetiracetam Treatment

- Supportive care
 - ABC's
- Preventing Absorption
 - Lavage, AC
- Enhancing elimination
 - No reported experience

Zonisamide (Zonegran)

- Mechanism is unclear. Probably blocks sodium and T-type calcium channels.
- Pharmacokinetics
 - Peak in 2-5 hours; F=100%
 - Vd = 0.8-1.6 L; PB 40%-50%
 - 50% metabolized by CYP3A4; 20% acetylated; 10% unchanged
 - Therapeutic range: 20 30 mg/L
- SE's: Somulence, anorexia, dizziness, headache, nausea, agitation/irritability

Zonisamide OD

Author	Conc (mg/L)	Clinical Effects
Naito (1988)	143 (est T0)	Coma, bradycardia, hypotension, dec respiration
Sztajnkrycer (2003)	44 @ ???	Death
Hofer (2011)	182 @ 8 hrs	QRS widening, QTc prolongation, mild acidosis, coma
Wightman (2011)	110 @ 5.5 hrs	CNS depression, sz- like activitiy

Summary Table

Agent	Distinguishing Clinical Effects*	Toxic Threshold	Potential Methods To Enhance Elimination
Phenytoin	Nystagmus, ataxia, lethary	15 mg/L, 30 mg/L, 50 mg/L	MDAC?
Carbamazepine	Seizures and arrhythmias	40-80 mg/L (24 mg/kg)	MDAC, HP, HD
Valproic acid	CNS depression and hyperammonemia	> 30 mg/L	MDAC, HD
Gabapentin	None	Unknown; Therapeutic 2-15 ug/mL	
Felbamate	Chronic: aplastic anemia and hepatic failure	> 135 ug/mL	
Lamotrigine	Same as phenytoin + QRS prolongation	≥ 19 mg/kg	HD
Vigabatrin	Psychosis	> 80 mg/L	
Topiramate	Agitation, bradykinesia, bradyphasia, nonion gap acidosis	450 mg	HD
Ethosuximide	None	Unknown	
Tiagabine	Myoclonus, rigidity,	420 ng/mL*	
	agitation, status epilepticus*	*seizures seen at therapeutic doses	
Oxcarbazepine	Same as carbamazepine	Unknown	
Levetiracetam	CNS + respiratory depression	30 gms	

Case Write-Up

S: A 2 year-old boy ingested seven 50 mg chewable dilantin tablets within the last 5 minutes. The child is asymptomatic and has no prior medical conditions. He is not taking any medications currently. No treatments have been instituted.

O: Not available

A: This patient's estimated blood concentration is:

$$Conc = \frac{Amount}{Volume} = \frac{50mg \times 7tablets}{0.6L / kg \times 10kg} = \frac{350mg}{6L} = 58.3mg / L$$

This blood concentration is consistent with significant lethargy (seen at concentrations of 50 ug/mL). The patient will need to be treated in a healthcare facility.

Management Plan

- Supportive care
 Intubation and mechanical ventilation if the patient loses respiratory drive (unlikely)
- 2. Prevent further absorption Administer activated charcoal.
- 3. Provide antidote Not applicable
- Enhance elimination
 Consider multiple dose activated charcoal if patient becomes severely intoxicated.